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1. Introduction 

The construction of modular invariants for Kac-Moody (KM) algebras is a problem 

interesting in itself as well as in its connections to 2-dimensional conformal field theories 

(CFT’s). A complete classification of positive modular invariants only exists for the E(2) 

algebra at any level’ and for E(N) at level one 2. For other algebras considerable progress 

has been made recently and many positive invariants have been obtained3~‘~5~6~T~s~g~‘0~11. 

Besides series of invariants that occur at generic level there are invariants that only occur 

at particular values of the level. This latter class includes invariants, such as the &type 

for E(2), due to automorphisms of the fusion rules of the extended algebra’2,13,*. In this 

note we point out how sporadic invariants of this type can be. found systematically. We 
- 

will focus on SU(N) but similar considerations apply to other algebras. 

A key feature of KM algebras is the existence of automorphisms c that lead to 

a systematic construction of infinite series of modular invariants3~4~s. Primary states A 

transform among themselves under the action of c. For certain values of the level there 

exist jized points, i.e. states with u(A) = A. In the following these fixed points will play 

an important rAle. 

To explain our basic idea let us recall some known facts. As noticed in Ref. [6] the 

ET invariant of =(2)1s is part of a short sequence that includes the exceptional invariants 

of zq3)s I2 and %(S)s s. The co-on property of these N, k pairs is that the only 

fixed point has (h - &) = 1. Furthermore, in the three cases the exceptional invariant can 

be found by substracting 

I%JIZ = Ix orbit - Xfizcd I2 (1) 

from the D-type invariant at the same level which includes terms ... + Ixorbitl* + 

NIXfizedI’+.... Here xorbit is a sum of characters of fields connected by the automorphism 

and having (h - 5) =integer. lgsla is by itself an invariant, it is in fact a constant. For 

instance, for E(2)ls one can easily verify 22 + ~14 - xs = 3 (xl is the character of the 

(1+ l)-dimensional representation). 



The main lesson to learn from the above discussion is that 2s can be regarded as 

the character of a trivial CFT. In this letter we will show that ET-type invariants can be 

derived from D-type invariants by substracting combinations that can be understood as 

modular invariants of a CFT associated to the fixed points. 

This note is organized as follows. In section 2 we review the properties of automor- 
- 

phisms of SU(N), in section 3 we explain how to derive the sporadic invariants and in 

section 3 we present our final comments. 

2. Automorphisms and Axed points 

We consider the E(N) algebra at level k. The primary states are in l-l correspon- 

dence with heighest weights A 
N-1 

i=l 

where Zoi are the SU(N) fundamental weights (ILJ; z zUi+N,zUN E 0) and Ri 2 0 k~e the 

Dynkin labels. Unitarity imposes the constraint 

N-l 

The number of primary fields is then 

Np= (k+N-1Y 
k!(N - l)! 

For future reference we introduce the Nth-ality of A defined as 

N-l 

t(A) = c inj 
kl 

(3) 

(4) 

(5) 

t is defined mod N. 

The ffie algebra has automorphisms that form a group isomorphic to ZN with 

elements ur, P = 1,. . . , N. u’ acts on A as 

Y(A) = kw, + a?(A) (6) 
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where a is the Coxeter rotation belonging to the Weyl group whose action on the funda- 

mental weights is given by 

aT(w;) = wi+t - w, (7) 

u’ has order N(r) where N(T) is the least integer such that TN(T) = 0 mod N. It is actually 

enough to consider the cases when T divides N. From now on we take N(r) = N/r = 

integer. 

We now study the fixed points of 6’. From (6) and (7) we readily find that u’(A) = A 

implies 
ni = ni+r 

which in turn give 

N-1 

k - c n< = n, 
i=l 

‘xl+... 

(8) 

(9) 

This shows that Exed points only exist when k = 0 mod N/r. Moreover, when this is the 

case the number of fixed points is 

NF= (6+--l)! 
k!(r - I)! 

Comparing with (4) we see that this is exactly the number of primary fields of E(T) at 

level i. Thus, to each fixed point AF of u’ we can associate a heighest weight X of SU(T). 

More precisely we have (in their respective Dynkin basis) 

A= (q,... ,w-I) +-+ AF = (nl,~z,...,n,-l,nt,~~,~~,...) 01) 

where 121 + . . . IZ,-~ 5 i and n, is given in (9) . 

The above correspondence was first derived in Ref. [6] where a relation between the 

conformal dimensions of AF and X was also established. This relation reads 

A(~F, A) = (h - ;I,, - (h - ;), = $(N,r)’ - l] 02) 
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Notice that A = m/12 with m integer. This property truly identifies E(T)& as the fixed 

point CFT as explained in Ref. [6]. The proof of (12) follows from (11) together with the 

definitions 

h(W) = 
w * (W + 2P) kdim G 

2(k+g) ’ ‘= k+g 

where p is the sum of the fundamental weights of G and the Coxeter number g is N for 

SU(N). When T = 1, X = 0 , AF = %p and (12) is easily found using the “strange” 

formula pa = gdim G/12. 

To end this section we discuss briefly a particular infinite series of modular invariants 

associated to Q’ found by Bernard s. A D-type invariant can be associated to u’ when 

k = 0 mod N/T and both N, T are either odd or even. This invariant can be written as 

For N even and k = 0 mod 2N there is an invariant associated to Q given by D’ E D. 

These D’ invariants also exist in less generic cases. For instance, for N = 8, any k, there 

is a D invariant and for N = 16, k = 0 mod 2 there is a D’ invariant. Other series can be 

constructed but they are not relevant for our purposes. D’ is the “integer spin” invariant 

generated by the simple current J, = kw, with spin h = kr(N - r)/2N ‘. D’ can be 

written as a sum of squares, one for each orbit of ur with t = 0 mod N/T. Most orbits 

are of length N/T but orbits including fixed points are shorter. D’ can be understood as 

a diagonal invariant with respect to the original algebra extended by .7, l’,s. 

3. Sporadic Invariants 

In, the previous section we learned that the fixed points of the automorphism u’ of 

a(N), level k, are naturally associated with E(T), level i = rk/N. We are then led 

to expect a relation between characters of the fixed points XF and characters 2~ of the 

associated weights X. From the generic character expansion 

xw = q’W)--ii. c d,q” 
n=o 
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we see that such a relation can arise if the shift A(AF,X) in eq. (12) is an integer. It is 

also necessary that there exists another E(N)k field As (belonging to some orbit) such 

that A&,X) = 0 and h(AF) - h(AO) =. t g m e er. We have verified that these conditions 

are. satisfied when A(AF, X) = 1 and that it is only in this case when a modular invariant 

of AL leads to a new positive invariant of E(N) h when substracted from a D-type 

invariant. The empirical reason for this is that in the expansion of 2~ when A(Ap, X) > 1 

XF will appear with opposite relative signs with respect to characters of other orbits. 

It is also possible that the relation between XF and 2~ involves multiplying by an 

appropriate rational function of the absolute modular invariant j(q). For instance., for a 

single fixed point it is conceivable that (xorb;t - XF) = 3 “‘/“P(j) where P is a polynomial 

and TX > 0 is an integer. The reason for this is that a CFT with a single (identity) 

field has c = 0 mod 8 I* and its character is necessarily of the form j*/sP(j) (recall that 

j113 = q- ‘js(l + 248q + 4124q2 f. . .) is the famous Fs level 1 character). Thus, in principle 

we can also allow for A = n/3 mod integer. We have checked that for E(N) this broader 

requirement does not lead to new invariants. 

The condition A(Ap,X) = 1 (together with i = integer) is only satisfied for the 

particular values of N,T, k shown in Table 1. We conjecture that only for those ?%(N)L 

there exist ET-type invariants, i.e. due to automorphisms of the fusion rules of the algebra 

extended by a simple current. This conjecture is partially proven since in all cases the 

invariants are known. Those for N = 2,3,5 were mentioned before and those for N = 

4,8,9,16 were found in Ref. [S] where a numerical search for invariants of this type 

failed for larger N. The new element contributed here is a clear criterium for when these 

invariants exist. Notice that Table 1 is “dual” under N o k as it should since invariants 

of m(N), and E(k)N are naturally related0~10~15. 

Let us now show how modular invariants of the fixed point CFT enter into the 

construction ot the sporadic invariants. In the introduction we already remarked that for 

N = 2,3,5, &bit - XF) = 2s where 2,~ =constant is the character of the trivial CFT 



associated to the single fixed point. To see how this generalizes to the other N we take 

the E(4), example for concreteness. We find 

x101 + X610 -+ Xl61 + X016 - x040 - x404 = 15(20 + 24) 

X012 + x5.01 + x250 + Xl25 - x222 = 1521 

x210 + x521 + x052 + Xl05 - xx&? = 1522 

(16) 

- - 
Here characters of SU(N)r, are represented as x,,,,,,,... and those of SU(r)i as ~,,,,,,,,,.., 

where ni, mi are the respective Dynkin labels. Notice that (2,2,2) is a fixed point of order 

4 whereas (0,4,0) and (4,0,4) are fixed points of order 2. 

To establish (16) we first determine the fixed points AF and their associated X weights. 

Second we find the states with h(Ap) - h(A) =integer. Notice that these states must 

organize into orbits of u’ since h(A) - h(o(A)) =. t g m e er. At this point we can guess how 

the xart,itr XF will arrange into 2~. Next the guess is checked by computing the first terms 

in the expansion of the characters. To this purpose we use the Weyl-Kac formula’s that 

for the z(N) specialized characters reads 

((k + N)y + W + p) . Q P’a (17) 

where 1 is the Dedekind function, M is the root lattice and the product is over thepositive 

roots. 

Now, we know that for E(2), there is a D-invariant 

120 + Z412 + w + I,Gl* (18) 

Writing this invariant in terms of the E(4) c h aracters as indicated in (16) (multiplying 

by an irrelevant factor) and substracting from the 0(4,8) invariant derived from (14) gives 
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the exceptional invariant 

E(498) = lxooo + xsoo + xoso + xood2 + 1x400 +x440 +x044 + ~00412 

+Ixozo + X602 + X060 + x20s12 + IX024 + x202 + x420 + x242 I2 

flX032 + x303 + x230 + x32312 + Ix311 +x331 +x133 + x11312 

(19) 

+1x121 + x412 + Xl41 + xd + lx040 + x404 I2 + 21xzza I2 

+ [(X012 + XSOl + x250 + x125)x;22 + (x210 + x521 + x052 + xlos)x;~~ 

+(x101 + X610 + Xl61 + X016)(X040 +x404)* + C.C.] 

&(%a) clearly arises from acting with an automorphism of the fusion rules of the extended 

algebra whose (diagonal) invariant is 1)(4,8). This algebra has primary fields that cm 

: be denoted by an orbit representative, i.e. (“tovo), (4,0>0), (0,2,0), (0,2,4), (0,3,2), 

(3,131)9 (1,%1), (0,1,2)9 (%l,o), (l,O,l), (0,4,O)i=1,2, (2,2,2)r=1,...,4. ComptingE(4,E) 

with D(4,8) we see that one is related to the other by the transformation that t&es 

(0,4,0)1 * (LO,l), (2,2,2)1 t-t (0,1,2), (2,2,2)2 +-+ (2,1,0), and leaves alI the other 

fields fixed. 

The results for other (N, k) can be summarized as follows: 

&(8,4) = 0'(8,4)- 63'5'(4,2) 

&(9,3) = D5(9,3)-802i(3,1) (20) 

E(16,2) = 0'(16,2)- 2552~4(8,1) 

where D invariants are computed using (14) and A = DN. The tilde invariants of E(T)& 

are written in terms of characters of E(N)k as shown below: 

63’fi2(% ‘4 = I(XIOOOOOI + . . .) - xooo~ooo - xozooozoIZ 

+ I(xzoooolo + . . .) - x1010101 I2 + I(x010000z + . .) - x1010101l2 

+ I(x1oloooo + . ..) - xololololz + j(x0000101 + ..-) - X0101010~2 

+ l(x0000012 + .. .) - x0020002 - x200020012 

802j(3,1) = 1(x1,8 + . ..) - x3,41’ + ((XIJ + . ..) - x1,4,,l’ + l(xv.8 + . . .) - xa,s,e12 

2552f’4(%1) = I(xv + . ..) - X4,12 - xs12 + 1(x1,3 + . ..) - ~a,14 - xz,lo12 

(21) 
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where dots stand for characters of the remaining fields in the orbit. For E(9) and E(16) 

we have adopted the notation xo,...,b meaning no = . . = nb = 1 and all other 1zi = 0. All 

the resulting & invariants can be obtained acting with an automorphism of the fusion rules 

of the extended algebras. 

4. Conclusions 

In this note we have contributed towards a classification of positive modular invariants 
- 

of SV(N), by determining the particular values of N, k for which this algebra possesses 

modular invariants of the ET type. This was achieved by using properties of the fixed point 

CFT. In particular, it was argued that these invariants appear when the shift A(AF, A) = 1. 

An open interesting problem is to find the deeper significance of this relation. 

Our arguments do apply to other algebras. For instance, in Ref. [6] the fixed point 

CFT of E(2n) together with A(Ap, X) were found. nom those results we can infer that 

z(2n)s and %(4n)k with nk = 16, k 2 2 have exceptional invariants. Remarkably, 

these invariants were first conjectured (based mainly on a numerical analysis) and then 

found by Verstegens. 

The fixed point CFTs of z, g, Fp(4n + 2), .?&4n), k odd and z(2n + l), k odd, 

have also been determined in Ref. [S]. The results for A indicate that these algebras do not 

have ET-type invariants except possibly when there is a single fixed point. This leaves the 

possibilities T&2)1(1 = E(2) - l~ and Sag. This last case is rather interesting as it has 

A = 513 and we find (~2 + xl4 - xs) = 495jlls (x0 is the character of the representation 

with n, = 1 and sll other ni = 0). Combining this result with the integer spin invariant 

of Fp(32)1 gives an exceptional invariant dual to that of =(2),s as explained in Ref. [E]. 

For z(2n + l), k even, and Fp(4n), k even, the fixed point CFTs have only been 

identified in a few cases. 
- 

For instance, for SO(5)b = Sp(4)h the fixed point CFT turns 

out to bes the non-unitary minimal model with p = 2,~’ = k + 3. When k = 8 we find 

A = 1 in agreement with the fact that an exceptional E(S), invariant has been found 

by Verstegens. In fact, in Ref. [8] exceptional invariants of the type discussed in this note 
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were also found for s(2n + l)~, rp(8) - 4 and Sp(l6)2. In these cases our arguments can 

be reversed to instead determine the associated fixed point CFTs. 

I thank I. Allekotte for providing some programs that allowed to check the results. 

Hospitality at Fermilab while carrying out this work is gratefully acknowledged. 
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2 16 1 

3 9 1 

4 8 2 

5 5 1 

8 4 4 

9 3 3 

16 2 8 

- 
TABLE 1. Values of SV(N), and order of the automorphismfor which ET-type invariants 

occur. 


